15种Seaborn可视化图表详解 三种可视化图表形式的优点和局限
lipiwang 2024-10-28 17:27 8 浏览 0 评论
可视化是以图形形式表示数据或信息的过程,在本文中,将介绍Seaborn的最常用15个可视化图表。
Seaborn是一个非常好用的数据可视化库,它基于Matplotlib,并且提供了一个高级接口,使用非常见简单,生成图表也非常的漂亮。
安装
安装非常简单:
pip install seaborn
在使用时只要导入就可以了。
import seaborn as sns
将数据集下载到本地,下载地址:https://gitcode.com/mwaskom/seaborn-data/overview?utm_source=csdn_github_accelerator&isLogin=1,无法导入数据是因为,电脑无法访问该网址,此时可将数据下载到本地,使用本地导入。
解压到seaborn_data文件夹中
Seaborn提供了一些内置的数据集,这里我们使用Seaborn的Iris数据集。
data = sns.load_dataset('iris', data_home='./seaborn-data/')
data[10:15]
sepal_length sepal_width petal_length petal_width species
10 5.4 3.7 1.5 0.2 setosa
11 4.8 3.4 1.6 0.2 setosa
12 4.8 3.0 1.4 0.1 setosa
13 4.3 3.0 1.1 0.1 setosa
14 5.8 4.0 1.2 0.2 setosa
我们看看数据量
data['species'].value_counts()
setosa 50
versicolor 50
virginica 50
Name: species, dtype: int64
1、条形图
条形图用于表示分类变量,它只显示平均值(或其他估计值)。我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.barplot(x='species', y='petal_length', hue='species', data=data)
plt.show()
2、散点图
散点图是由几个数据点组成的图。x轴表示花瓣长度,y轴表示数据集的萼片长度。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.scatterplot(x='petal_length', y='sepal_length', hue='species', style='species', s=90, data=data)
plt.show()
3、直方图
直方图通常用于可视化单个变量的分布,但它们也可用于比较两个或更多变量的分布。除了直方图之外,KDE参数还可以用来显示核密度估计(KDE)。这里,我们使用萼片长度。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.histplot(x='sepal_length', kde=True, data=data)
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.histplot(x='sepal_length', kde=True, hue='species', data=data)
plt.show()
4、线形图
线形图可以用来可视化各种不同的关系。它们易于创建和分析,在线形图中每个数据点由直线连接。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.lineplot(x='petal_length', y='petal_width', data=data)
plt.show()
5、小提琴图
小提琴图可以表示数据的密度,数据的密度越大的区域越胖。“小提琴”形状表示数据的核密度估计,每个点的形状宽度表示该点的数据密度。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.violinplot(x='species',y='petal_length',data=data,hue='species')
plt.show()
6、箱线图
箱形图由一个箱形图和两个须状图组成。它表示四分位数范围(IQR),即第一和第三四分位数之间的范围。中位数由框内的直线表示。须状图从盒边缘延伸到最小值和最大值的1.5倍IQR。异常值是落在此范围之外的任何数据点,并会单独显示出来。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.boxplot(x='species', y='sepal_length', data=data, hue='species')
plt.show()
7、热图
热图是数据的二维可视化表示,它使用颜色来显示变量的值。热图经常用于显示数据集中的各种因素如何相互关联,比如相关系数。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
heat_corr = data.corr()
sns.heatmap(heat_corr, annot=True)
plt.show()
8、点图
点图是一种统计图表,用于显示一组数据及其变异性的平均值或集中趋势。点图通常用于探索性数据分析,可以快速可视化数据集的分布或比较多个数据集。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.pointplot(x='species', y='petal_length', data=data, markers='^', color='g')
plt.show()
9、密度图
密度图通过估计连续随机变量的概率函数来表示数据集的分布,也称为核密度估计(KDE)图。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.kdeplot(x='petal_length', data=data, hue='species', multiple='stack')
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.kdeplot(x='petal_length', y='sepal_length', data=data, hue='species')
plt.show()
10、计数图
计数图是一种分类图,它显示了分类变量的每个类别中观测值的计数。它本质上是一个柱状图,其中每个柱的高度代表特定类别的观测值的数量。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.countplot(x='species', data=data)
plt.show()
11、分簇散点图
分簇散点图与条形图相似,但是它会修改一些点以防止重叠,这有助于更好地表示值的分布。在该图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.swarmplot(x='sepal_width', y='species', data=data, hue='species', dodge=True, orient='h', size=8)
plt.show()
12、配对图
配对图可视化了数据集中几个变量之间的成对关系。它创建了一个坐标轴网格,这样所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。对角线图是单变量分布图,它绘制了每列数据的边际分布。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.set(rc={"figure.figsize": (6, 3)})
sns.pairplot(data=data, hue='species')
plt.show()
13、Facet Grid
Seaborn中的FacetGrid函数将数据集和一个或多个分类变量作为输入,并创建一个图表网格,每种类别变量的组合都有一个图表。网格中的每个图都可以定制为不同类型的图,例如散点图、直方图或箱形图。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
g = sns.FacetGrid(data, col="species", height=4, hue='species')
g.map(sns.histplot, "petal_length")
plt.show()
14、联合分布图
联合分布图将两个不同的图组合在一个表示中,可以展示两个变量之间的关系(二元关系)。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.jointplot(x="sepal_length", y="sepal_width", data=data,
palette='Set2', hue='species')
plt.show()
15、分类图
cat图(分类图的缩写)是Seaborn中的定制的一种图,它可以可视化数据集中一个或多个分类变量与连续变量之间的关系。它可用于显示分布、比较组或显示不同变量之间的关系。
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset('iris', data_home='./seaborn-data/')
sns.catplot(data=data, x="petal_length", y="species", kind="violin", color=".9", inner=None)
sns.swarmplot(data=data, x="petal_length", y="species", size=3)
plt.show()
总结
Seaborn对于任何使用Python处理数据的人来说都是一个非常好用的工具,它易于使用,并且提供更美观的图形使其成为探索和交流数据最佳选择。它与其他Python数据分析库(如Pandas)的集成使其成为数据探索和可视化的强大工具。
相关推荐
- 想减少Windows 11内存占用?请取消固定Teams
-
如果你想要提高Windows11系统的运行速度,那么可以禁用某些默认启用的功能和设置。如果你的Windows11是安装在已经停止支持的设备或者内存容量不高的旧设备,那么应该立即限制或禁用固...
- Windows查看端口占用、查看PID对应的进程、并终止进程
-
Windows下:查看端口占用netstat-ano|findstr"端口号"获取到pid查看PID对应的进程tasklist|findstr"进程ID"...
- 计算机组成原理(36): 分时之一——进程
-
建立一个虚拟机VM目标:给每个程序一个自己的虚拟机“VirtualMachine”,程序并不知道其他的虚拟机。1.1进程(Process)为了捕获正在运行的程序,我们创建一个称为“进程(Proce...
- window系统如何停止端口被占用的进程(高手版)
-
如上图1,作为开发人员是不是经常遇到这个问题?(Webserverfailedtostart.Port9527wasalreadyinuse.)当然,如果在你知道确实有某个进程正占...
- 电脑的文件无法删除咋回事?你需要这款神兵利器
-
很多朋友用电脑的时候,都遇到过文件无法删除的情况。这往往是由于文件被某个软件、进程所调用所引发的——在Windows中,某个文件如果被使用,这个文件可能就没法进行删除、重命名之类的操作了。想要进一步操...
- Windows日志分析(windows 日志文件)
-
1.Windows日志文件简介1.1Windows日志核心分类1.系统日志系统日志包含由Windows系统组件记录的事件,记录系统进程和设备驱动程序的活动。由它审核的系统事件包括启动失败的设备驱动程...
- 电脑软件崩溃、闪退不用慌!DJS Tech 教你几招轻松解决
-
当你正全神贯注用电脑处理重要文件、沉浸在精彩的游戏世界,或是观看喜欢的视频时,软件突然崩溃、闪退,那一刻的烦躁简直难以言喻。别着急,DJSTech作为深耕计算机领域多年的专业团队,为你带来一系列超...
- 微软Win11推进淘汰控制面板,时间服务器配置迁移至设置应用
-
IT之家5月29日消息,科技媒体Winaero昨日(5月28日)发布博文,报道称微软在Windows11系统中,继续推进“淘汰控制面板”进程,配置时间服务器地址选项迁移到设置应...
- 微软 PowerToys更新,可帮你找出 Win11上哪些进程正在占用该文件
-
IT之家11月3日消息,微软针对Windows11和Windows10的PowerToys已经更新到了最新的0.64.0版本,并上线了一个名为“文件锁匠FileLock...
- Windows基础操作 认识任务管理器(windows任务管理器的使用)
-
Windows基础操作:认识任务管理器任务管理器(TaskManager)是Windows系统中一个功能强大的实用工具,它为用户提供了实时监控系统资源、管理正在运行的程序和服务的能力。掌握任务管理器...
- windows——netstat过滤(终止进程)
-
windows——netstat过滤(终止进程)在Windows操作系统中,使用netstat命令可以查看网络连接的状态。要过滤特定协议或端口的连接,可以使用以下命令:查看所有连接:netstat-...
- 只要这么做 Windows Defender与第三方就能和平共存啦
-
无论大家是否喜欢WindowsDefender,伴随着Windows10的不断升级,它已经成为系统的底层必备组件之一。虽然我们有各种各样的方法去关闭它,换用顺手的第三方,但只要更新打补丁,噩梦就来...
- Win10如何彻底关闭wsappx进程(win10 wsappx怎么关闭)
-
win10如何彻底关闭wsappx进程?wsappx进程是什么?wsappx进程是Windows10系统的一部分,这个进程是WindowsStore和微软通用应用程序平台(UWP)的依赖进程。...
- Windows环境黑客入侵应急与排查(黑客入侵电脑原理)
-
1文件分析1.1临时目录排查黑客往往可能将病毒放在临时目录(tmp/temp),或者将病毒相关文件释放到临时目录,因此需要检查临时目录是否存在异常文件。假设系统盘在C盘,则通常情况下的临时目录如下...
- Windows 11 24H2 KB5044384出现大面积安装失败、任务管理器0进程等问题
-
Windows11KB5044384更新由于出现大量错误而无法在Windows1124H2上安装、其中包括一个奇怪的错误,即由于0x800f0922、0x800736b3和0x8...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- maven镜像 (69)
- undefined reference to (60)
- zip格式 (63)
- oracle over (62)
- date_format函数用法 (67)
- 在线代理服务器 (60)
- shell 字符串比较 (74)
- x509证书 (61)
- localhost (65)
- java.awt.headless (66)
- syn_sent (64)
- settings.xml (59)
- 弹出窗口 (56)
- applicationcontextaware (72)
- my.cnf (73)
- httpsession (62)
- pkcs7 (62)
- session cookie (63)
- java 生成uuid (58)
- could not initialize class (58)
- beanpropertyrowmapper (58)
- word空格下划线不显示 (73)
- jar文件 (60)
- jsp内置对象 (58)
- makefile编写规则 (58)