百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

一篇文章搞懂Python协程 python3.8协程

lipiwang 2024-11-01 14:09 7 浏览 0 评论

前引

之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。

  随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。

  为此我们需要先回顾下并发的本质:切换+保存状态

  cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长

   

  PS:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态

   一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

  为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换

单纯地切换反而会降低运行效率

#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res) #写成consumer(producer())会降低执行效率
stop=time.time()
print(stop-start) #1.5536692142486572



#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

yield无法做到遇到io阻塞

import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行

stop=time.time()
print(stop-start)

对于单线程序,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案

#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
#2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

协程介绍

  协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

  需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

协程特点

  • 必须在只有一个单线程里实现并发
  • 修改共享数据不需加锁
  • 用户程序里自己保存多个控制流的上下文栈
  • 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
  • Greenlet模块

    安装

    pip3 install greenlet

    greenlet实现状态切换

    from greenlet import greenlet
    
    def eat(name):
        print('%s eat 1' %name)
        g2.switch('egon')
        print('%s eat 2' %name)
        g2.switch()
    def play(name):
        print('%s play 1' %name)
        g1.switch()
        print('%s play 2' %name)
    
    g1=greenlet(eat)
    g2=greenlet(play)
    
    g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要

    单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

    效率对比

    #顺序执行
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
    
    start=time.time()
    f1()
    f2()
    stop=time.time()
    print('run time is %s' %(stop-start)) #10.985628366470337
    
    #切换
    from greenlet import greenlet
    import time
    def f1():
        res=1
        for i in range(100000000):
            res+=i
            g2.switch()
    
    def f2():
        res=1
        for i in range(100000000):
            res*=i
            g1.switch()
    
    start=time.time()
    g1=greenlet(f1)
    g2=greenlet(f2)
    g1.switch()
    stop=time.time()
    print('run time is %s' %(stop-start)) # 52.763017892837524

      greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

      单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

    Gevent模块

    安装

    pip3 install gevent

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    用法

    g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
    
    g2=gevent.spawn(func2)
    
    g1.join() #等待g1结束
    
    g2.join() #等待g2结束
    
    #或者上述两步合作一步:gevent.joinall([g1,g2])
    
    g1.value#拿到func1的返回值

    例:遇到io主动切换

    import gevent
    def eat(name):
        print('%s eat 1' %name)
        gevent.sleep(2)
        print('%s eat 2' %name)
    
    def play(name):
        print('%s play 1' %name)
        gevent.sleep(1)
        print('%s play 2' %name)
    
    
    g1=gevent.spawn(eat,'egon')
    g2=gevent.spawn(play,name='egon')
    g1.join()
    g2.join()
    #或者gevent.joinall([g1,g2])
    print('主')

      上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

      from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

      或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

    from gevent import monkey;monkey.patch_all()
    
    import gevent
    import time
    def eat():
        print('eat food 1')
        time.sleep(2)
        print('eat food 2')
    
    def play():
        print('play 1')
        time.sleep(1)
        print('play 2')
    
    g1=gevent.spawn(eat)
    g2=gevent.spawn(play)
    gevent.joinall([g1,g2])
    print('主')

    我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

    查看threading.current_thread().getName()

    from gevent import monkey;monkey.patch_all()
    import threading
    import gevent
    import time
    def eat():
        print(threading.current_thread().getName())
        print('eat food 1')
        time.sleep(2)
        print('eat food 2')
    
    def play():
        print(threading.current_thread().getName())
        print('play 1')
        time.sleep(1)
        print('play 2')
    
    g1=gevent.spawn(eat)
    g2=gevent.spawn(play)
    gevent.joinall([g1,g2])
    print('主')

    Gevent之同步与异步

    from gevent import spawn,joinall,monkey;monkey.patch_all()
    
    import time
    def task(pid):
        """
        Some non-deterministic task
        """
        time.sleep(0.5)
        print('Task %s done' % pid)
    
    
    def synchronous():  # 同步
        for i in range(10):
            task(i)
    
    def asynchronous(): # 异步
        g_l=[spawn(task,i) for i in range(10)]
        joinall(g_l)
        print('DONE')
        
    if __name__ == '__main__':
        print('Synchronous:')
        synchronous()
        print('Asynchronous:')
        asynchronous()
    #  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
    #  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
    #  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。

    Gevent之应用举例一

    协程应用:爬虫

    from gevent import monkey;monkey.patch_all()
    import gevent
    import requests
    import time
    
    def get_page(url):
        print('GET: %s' %url)
        response=requests.get(url)
        if response.status_code == 200:
            print('%d bytes received from %s' %(len(response.text),url))
    
    
    start_time=time.time()
    gevent.joinall([
        gevent.spawn(get_page,'https://www.python.org/'),
        gevent.spawn(get_page,'https://www.yahoo.com/'),
        gevent.spawn(get_page,'https://github.com/'),
    ])
    stop_time=time.time()
    print('run time is %s' %(stop_time-start_time))

    Gevent之应用举例二

    通过gevent实现单线程下的socket并发

    注意 :from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞

    server

    from gevent import monkey;monkey.patch_all()
    from socket import *
    import gevent
    
    #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
    # from gevent import socket
    # s=socket.socket()
    
    def server(server_ip,port):
        s=socket(AF_INET,SOCK_STREAM)
        s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
        s.bind((server_ip,port))
        s.listen(5)
        while True:
            conn,addr=s.accept()
            gevent.spawn(talk,conn,addr)
    
    def talk(conn,addr):
        try:
            while True:
                res=conn.recv(1024)
                print('client %s:%s msg: %s' %(addr[0],addr[1],res))
                conn.send(res.upper())
        except Exception as e:
            print(e)
        finally:
            conn.close()
    
    if __name__ == '__main__':
        server('127.0.0.1',8080)

    client

    from socket import *
    
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(('127.0.0.1',8080))
    
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        client.send(msg.encode('utf-8'))
        msg=client.recv(1024)
        print(msg.decode('utf-8'))

    多线程并发多个客户端

    from threading import Thread
    from socket import *
    import threading
    
    def client(server_ip,port):
        c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
        c.connect((server_ip,port))
    
        count=0
        while True:
            c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
            msg=c.recv(1024)
            print(msg.decode('utf-8'))
            count+=1
    if __name__ == '__main__':
        for i in range(500):
            t=Thread(target=client,args=('127.0.0.1',8080))
            t.start()

    #计算机##编程##Python##Python基础##科技新星创作营#




    相关推荐

    ubuntu单机安装open-falcon极度详细操作

    备注:以下操作均由本人实际操作并得到验证,喜欢的同学可尝试操作安装。步骤一1.1环境准备(使用系统:ubuntu18.04)1.1.1安装redisubuntu下安装(参考借鉴:https://...

    Linux搭建promtail、loki、grafana轻量日志监控系统

    一:简介日志监控告警系统,较为主流的是ELK(Elasticsearch、Logstash和Kibana核心套件构成),虽然优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,...

    一文搞懂,WAF阻止恶意攻击的8种方法

    WAF(Web应用程序防火墙)是应用程序和互联网流量之间的第一道防线,它监视和过滤Internet流量以阻止不良流量和恶意请求,WAF是确保Web服务的可用性和完整性的重要安全解决方案。它...

    14配置appvolume(ios14.6配置文件)

    使用AppVolumes应用程序功能,您可以管理应用程序的整个生命周期,包括打包、更新和停用应用程序。您还可以自定义应用程序分配,以向最终用户提供应用程序的特定版本14.1安装appvolume...

    目前流行的缺陷管理工具(缺陷管理方式存在的优缺点)

    摘自:https://blog.csdn.net/jasonteststudy/article/details/7090127?utm_medium=distribute.pc_relevant.no...

    开源数字货币交易所开发学习笔记(2)——SpringCloud

    前言码云(Gitee)上开源数字货币交易所源码CoinExchange的整体架构用了SpringCloud,对于经验丰富的Java程序员来说,可能很简单,但是对于我这种入门级程序员,还是有学习的必要的...

    开发JAX-RPC Web Services for WebSphere(下)

    在开发JAX-RPCWebServicesforWebSphere(上)一文中,小编为大家介绍了如何创建一个Web服务项目、如何创建一个服务类和Web服务,以及部署项目等内容。接下来小编将为大...

    CXF学习笔记1(cxf client)

    webservice是发布服务的简单并实用的一种技术了,个人学习了CXF这个框架,也比较简单,发布了一些笔记,希望对笔友收藏并有些作用哦1.什么是webServicewebService让一个程序可...

    分布式RPC最全详解(图文全面总结)

    分布式通信RPC是非常重要的分布式系统组件,大厂经常考察的Dubbo等RPC框架,下面我就全面来详解分布式通信RPC@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集》...

    Oracle WebLogic远程命令执行0day漏洞(CVE-2019-2725补丁绕过)预警

    概述近日,奇安信天眼与安服团队通过数据监控发现,野外出现OracleWebLogic远程命令执行漏洞最新利用代码,此攻击利用绕过了厂商今年4月底所发布的最新安全补丁(CVE-2019-2725)。由...

    Spring IoC Container 原理解析(spring中ioc三种实现原理)

    IoC、DI基础概念关于IoC和DI大家都不陌生,我们直接上martinfowler的原文,里面已经有DI的例子和spring的使用示例《InversionofControlContainer...

    Arthas线上服务器问题排查(arthas部署)

    1Arthas(阿尔萨斯)能为你做什么?这个类从哪个jar包加载的?为什么会报各种类相关的Exception?我改的代码为什么没有执行到?难道是我没commit?分支搞错了?遇到问题无法在...

    工具篇之IDEA功能插件HTTP_CLENT(idea2021插件)

    工具描述:Java开发人员通用的开发者工具IDEA集成了HTTPClient功能,之后可以无需单独安装使用PostMan用来模拟http请求。创建方式:1)简易模式Tools->HTTPCl...

    RPC、Web Service等几种远程监控通信方式对比

    几种远程监控通信方式的介绍一.RPCRPC使用C/S方式,采用http协议,发送请求到服务器,等待服务器返回结果。这个请求包括一个参数集和一个文本集,通常形成“classname.meth...

    《github精选系列》——SpringBoot 全家桶

    1简单总结1SpringBoot全家桶简介2项目简介3子项目列表4环境5运行6后续计划7问题反馈gitee地址:https://gitee.com/yidao620/springbo...

    取消回复欢迎 发表评论: