百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

分布式ID生成器 分布式id生成器解决时钟回退

lipiwang 2024-11-12 13:17 13 浏览 0 评论



在高并发或者分表分库情况下怎么保证数据id的幂等性呢?

经常用到的解决方案有以下几种:

  1. 微软公司通用唯一识别码(UUID)
  2. Twitter公司雪花算法(SnowFlake)
  3. 基于数据库的id自增
  4. 对id进行缓

本文将对snowflake算法进行讲解:

  1. snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。
  2. 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。


snowflake算法所生成的ID结构:


  1. 整个结构是64位,所以我们在Java中可以使用long来进行存储。
  2. 该算法实现基本就是二进制操作,单机每秒内理论上最多可以生成1024*(2^12),也就是409.6万个ID(1024 X 4096 = 4194304)


64位说明:
  1. 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
  2. 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
  3. 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) 得到的值)。
   这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。
   41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
  4. 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
  5. 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号加起来刚好64位,为一个Long型。


SnowFlake的优点:
  1. 整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
  2. 生成ID时不依赖于DB,完全在内存生成,高性能高可用。
  3. ID呈趋势递增,后续插入索引树的时候性能较好。


SnowFlake算法的缺点:
  依赖于系统时钟的一致性。如果某台机器的系统时钟回拨,有可能造成ID冲突,或者ID乱序


算法代码如下:

/**
 * 功能描述:SnowFlake算法
 * @author PanHu Sun
 * @Date 2019/12/1 18:47
 */
public class SnowflakeIdWorker {
    // ==============================Fields==================
    /** 开始时间截 (2019-08-06) */
    private final long twepoch = 1565020800000L;

    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;

    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;

    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;

    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;

    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;

    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    /** 工作机器ID(0~31) */
    private long workerId;

    /** 数据中心ID(0~31) */
    private long datacenterId;

    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;

    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;

    //==============================Constructors====================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    // ==============================Methods=================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();

        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        //上次生成ID的时间截
        lastTimestamp = timestamp;

        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
            | (datacenterId << datacenterIdShift) //
            | (workerId << workerIdShift) //
            | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}


快速使用snowflake算法只需以下几步:


1. 引入hutool依赖

<dependency>
     <groupId>cn.hutool</groupId>
     <artifactId>hutool-captcha</artifactId>
     <version>5.0.6</version>
 </dependency>


2. ID 生成器

import cn.hutool.core.date.DatePattern;
import cn.hutool.core.lang.ObjectId;
import cn.hutool.core.lang.Snowflake;
import cn.hutool.core.net.NetUtil;
import cn.hutool.core.util.IdUtil;
import cn.hutool.core.util.RandomUtil;
import lombok.extern.slf4j.Slf4j;
import org.joda.time.DateTime;

import javax.annotation.PostConstruct;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * 功能描述:
 * @author PanHu Sun
 * @Date 2019/12/1 18:50
 */
@Slf4j
public class IdGenerator {

    private long workerId = 0;

    @PostConstruct
    void init() {
        try {
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
            log.info("当前机器 workerId: {}", workerId);
        } catch (Exception e) {
            log.warn("获取机器 ID 失败", e);
            workerId = NetUtil.getLocalhost().hashCode();
            log.info("当前机器 workerId: {}", workerId);
        }
    }

    /**
     * 获取一个批次号,形如 2019071015301361000101237
     * 数据库使用 char(25) 存储
     * @param tenantId 租户ID,5 位
     * @param module 业务模块ID,2 位
     * @return 返回批次号
     */
    public static synchronized String batchId(int tenantId, int module) {
        String prefix = DateTime.now().toString(DatePattern.PURE_DATETIME_MS_PATTERN);
        return prefix + tenantId + module + RandomUtil.randomNumbers(3);
    }

    @Deprecated
    public synchronized String getBatchId(int tenantId, int module) {
        return batchId(tenantId, module);
    }

    /**
     * 生成的是不带-的字符串,类似于:b17f24ff026d40949c85a24f4f375d42
     * @return
     */
    public static String simpleUUID() {
        return IdUtil.simpleUUID();
    }

    /**
     * 生成的UUID是带-的字符串,类似于:a5c8a5e8-df2b-4706-bea4-08d0939410e3
     * @return
     */
    public static String randomUUID() {
        return IdUtil.randomUUID();
    }

    private Snowflake snowflake = IdUtil.createSnowflake(workerId, 1);

    public synchronized long snowflakeId() {
        return snowflake.nextId();
    }

    public synchronized long snowflakeId(long workerId, long dataCenterId) {
        Snowflake snowflake = IdUtil.createSnowflake(workerId, dataCenterId);
        return snowflake.nextId();
    }

    /**
     * 生成类似:5b9e306a4df4f8c54a39fb0c
     * ObjectId 是 MongoDB 数据库的一种唯一 ID 生成策略,
     * 是 UUID version1 的变种,详细介绍可见:服务化框架-分布式 Unique ID 的生成方法一览。
     * @return
     */
    public static String objectId() {
        return ObjectId.next();
    }




    //   测试
    public static void main(String[] args) {
        // 还会有重复的
        // for (int i = 0; i < 100; i++) {
        //     String batchId = batchId(1001, 100);
        //     log.info("批次号: {}", batchId);
        // }

        // UUID 不带 -
        // for (int i = 0; i < 100; i++) {
        //     String simpleUUID = simpleUUID();
        //     log.info("simpleUUID: {}", simpleUUID);
        // }

        // UUID 带 -
        // for (int i = 0; i < 100; i++) {
        //     String randomUUID = randomUUID();
        //     log.info("randomUUID: {}", randomUUID);
        // }

        // 没有重复
        // for (int i = 0; i < 100; i++) {
        //     String objectId = objectId();
        //     log.info("objectId: {}", objectId);
        // }

        ExecutorService executorService = Executors.newFixedThreadPool(20);
        IdGenerator idGenerator = new IdGenerator();
        for (int i = 0; i < 100; i++) {
            executorService.execute(() -> {
                log.info("分布式 ID: {}", idGenerator.snowflakeId());
            });
        }
        executorService.shutdown();
    }
}


3. 测试类

public class IdGeneratorTest {
    @Autowired
    private IdGenerator idGenerator;

    @Test
    public void testBatchId() {
        for (int i = 0; i < 100; i++) {
            String batchId = idGenerator.batchId(1001, 100);
            log.info("批次号: {}", batchId);
        }
    }

    @Test
    public void testSimpleUUID() {
        for (int i = 0; i < 100; i++) {
            String simpleUUID = idGenerator.simpleUUID();
            log.info("simpleUUID: {}", simpleUUID);
        }
    }

    @Test
    public void testRandomUUID() {
        for (int i = 0; i < 100; i++) {
            String randomUUID = idGenerator.randomUUID();
            log.info("randomUUID: {}", randomUUID);
        }
    }

    @Test
    public void testObjectID() {
        for (int i = 0; i < 100; i++) {
            String objectId = idGenerator.objectId();
            log.info("objectId: {}", objectId);
        }
    }

    @Test
    public void testSnowflakeId() {
        ExecutorService executorService = Executors.newFixedThreadPool(20);
        for (int i = 0; i < 20; i++) {
            executorService.execute(() -> {
                log.info("分布式 ID: {}", idGenerator.snowflakeId());
            });
        }
        executorService.shutdown();
    }
}


运行结果:


注:在项目中我们只需要注入 @Autowired private IdGenerator idGenerator;即可,然后设置id order.setId(idGenerator.snowflakeId() + "");



作者:JimmyThomas

转载链接:https://juejin.im/post/5d8882d8

相关推荐

前端入门——css 网格轨道详细介绍

上篇前端入门——cssGrid网格基础知识整体大概介绍了cssgrid的基本概念及使用方法,本文将介绍创建网格容器时会发生什么?以及在网格容器上使用行、列属性如何定位元素。在本文中,将介绍:...

Islands Architecture(孤岛架构)在携程新版首页的实践

一、项目背景2022,携程PC版首页终于迎来了首次改版,完成了用户体验与技术栈的全面升级。作为与用户连接的重要入口,旧版PC首页已经陪伴携程走过了22年,承担着重要使命的同时,也遇到了很多问题:维护/...

HTML中script标签中的那些属性

HTML中的<script>标签详解在HTML中,<script>标签用于包含或引用JavaScript代码,是前端开发中不可或缺的一部分。通过合理使用<scrip...

CSS 中各种居中你真的玩明白了么

页面布局中最常见的需求就是元素或者文字居中了,但是根据场景的不同,居中也有简单到复杂各种不同的实现方式,本篇就带大家一起了解下,各种场景下,该如何使用CSS实现居中前言页面布局中最常见的需求就是元...

CSS样式更改——列表、表格和轮廓

上篇文章主要介绍了CSS样式更改篇中的字体设置Font&边框Border设置,这篇文章分享列表、表格和轮廓,一起来看看吧。1.列表List1).列表的类型<ulstyle='list-...

一文吃透 CSS Flex 布局

原文链接:一文吃透CSSFlex布局教学游戏这里有两个小游戏,可用来练习flex布局。塔防游戏送小青蛙回家Flexbox概述Flexbox布局也叫Flex布局,弹性盒子布局。它决定了...

css实现多行文本的展开收起

背景在我们写需求时可能会遇到类似于这样的多行文本展开与收起的场景:那么,如何通过纯css实现这样的效果呢?实现的难点(1)位于多行文本右下角的展开收起按钮。(2)展开和收起两种状态的切换。(3)文本...

css 垂直居中的几种实现方式

前言设计是带有主观色彩的,同样网页设计中的css一样让人摸不头脑。网上列举的实现方式一大把,或许在这里你都看到过,但既然来到这里我希望这篇能让你看有所收获,毕竟这也是前端面试的基础。实现方式备注:...

WordPress固定链接设置

WordPress设置里的最后一项就是固定链接设置,固定链接设置是决定WordPress文章及静态页面URL的重要步骤,从站点的SEO角度来讲也是。固定链接设置决定网站URL,当页面数少的时候,可以一...

面试发愁!吃透 20 道 CSS 核心题,大厂 Offer 轻松拿

前端小伙伴们,是不是一想到面试里的CSS布局题就发愁?写代码时布局总是对不齐,面试官追问兼容性就卡壳,想跳槽却总被“多列等高”“响应式布局”这些问题难住——别担心!从今天起,咱们每天拆解一...

3种CSS清除浮动的方法

今天这篇文章给大家介绍3种CSS清除浮动的方法。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。首先,这里就不讲为什么我们要清楚浮动,反正不清除浮动事多多。下面我就讲3种常用清除浮动的...

2025 年 CSS 终于要支持强大的自定义函数了?

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发!1.什么是CSS自定义属性CSS自...

css3属性(transform)的一个css3动画小应用

闲言碎语不多讲,咱们说说css3的transform属性:先上效果:效果说明:当鼠标移到a标签的时候,从右上角滑出二维码。实现方法:HTML代码如下:需要说明的一点是,a链接的跳转需要用javasc...

CSS基础知识(七)CSS背景

一、CSS背景属性1.背景颜色(background-color)属性值:transparent(透明的)或color(颜色)2.背景图片(background-image)属性值:none(没有)...

CSS 水平居中方式二

<divid="parent"><!--定义子级元素--><divid="child">居中布局</div>...

取消回复欢迎 发表评论: