百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

[seaborn] seaborn学习笔记1-箱形图Boxplot

lipiwang 2024-10-28 17:24 9 浏览 0 评论

1 箱形图Boxplot

?(代码下载)?? Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中用boxplot函数制作箱形图。该章节主要内容有:

  1. 基础箱形图绘制 Basic boxplot and input format
  2. 自定义外观 Custom boxplot appearance
  3. 箱型图的颜色设置 Control colors of boxplot
  4. 分组箱图 Grouped Boxplot
  5. 箱图的顺序设置 Control order of boxplot
  6. 添加散点分布 Add jitter over boxplot
  7. 显示各类的样本数 Show number of observation on boxplot
  8. 箱形图隐藏的数据处理 Hidden data under boxplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()


sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

2

4.7

3.2

1.3

0.2

setosa

3

4.6

3.1

1.5

0.2

setosa

4

5.0

3.6

1.4

0.2

setosa

1. 基础箱形图绘制 Basic boxplot and input format

  • 一个数值变量 One numerical variable only
  • 一个数值变量和多个分组 One numerical variable, and several groups
  • 多个数值变量 Several numerical variable
  • 水平箱型图 Horizontal boxplot with seaborn
# 一个数值变量 One numerical variable only
# 如果您只有一个数字变量,则可以使用此代码获得仅包含一个组的箱线图。
# Make boxplot for one group only
# 显示花萼长度sepal_length
sns.boxplot( y=df["sepal_length"] );
# 一个数值变量和多个分组 One numerical variable, and several groups
# 假设我们想要研究数值变量的分布,但是对于每个组分别进行研究。在这里,我们研究了3种花的萼片长度。
# x花的品种,y花萼长度
sns.boxplot( x=df["species"], y=df["sepal_length"] );
# 多个数值变量 Several numerical variable
# 可以研究几个数值变量的分布,比如说萼片的长度和宽度:
sns.boxplot(data=df.iloc[:,0:2]);
# 水平箱型图 Horizontal boxplot with seaborn
# 用seaborn将你的箱图水平转动是非常简单的。您可以切换x和y属性,或使用选项orient ="h"
sns.boxplot( y=df["species"], x=df["sepal_length"] );

2. 自定义外观 Custom boxplot appearance

  • 自定义线宽 Custom line width
  • 添加缺口 Add notch
  • 控制箱的尺寸 Control box sizes
# 自定义线宽 Custom line width
# Change line width
# 根据linewidth改变线条宽度
sns.boxplot( x=df["species"], y=df["sepal_length"], linewidth=5);
# 添加缺口 Add notch
# notch设置为true即可
sns.boxplot( x=df["species"], y=df["sepal_length"], notch=True);
# 控制箱的尺寸 Control box sizes
# Change width
sns.boxplot( x=df["species"], y=df["sepal_length"], width=0.3);

3. 箱型图的颜色设置 Control colors of boxplot

  • 调色板的使用 Use a color palette
  • 单种颜色的使用 Uniform color
  • 每组的特定颜色 Specific color for each group
  • 单组高亮 Highlight a group
  • 添加透明色 Add transparency to color
# 调色板的使用 Use a color palette 
# Python提出了几种调色板。您可以像Set1,Set2,Set3,Paired,BuPu一样调用RColorBrewer调色板,还有Blues或BuGn_r等调色板。
# 调色板各种颜色见 http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/
# t通过plaette调用调色板,Use a color palette
sns.boxplot( x=df["species"], y=df["sepal_length"], palette="Blues");
# 单种颜色的使用 Uniform color
# 当然您可以轻松地为每个盒子应用同样的颜色。最常见的是b: blue
# 颜色列表 https://matplotlib.org/examples/color/named_colors.html
sns.boxplot( x=df["species"], y=df["sepal_length"], color="skyblue");
# 每组的特定颜色 Specific color for each group
# 用不用颜色描绘不同种类的花
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 单组高亮 Highlight a group
# 设定某一组为红色,其他组为蓝色
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 添加透明色 Add transparency to color
# usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df);
# Add transparency to colors 设置透明色
for patch in ax.artists:
    r, g, b, a = patch.get_facecolor()
    patch.set_facecolor((r, g, b, .3))

4. 分组箱图 Grouped Boxplot

# 当您有一个数值变量,几个组和子组时,将使用分组箱图。使用seaborn很容易实现。Y是您的数字变量,x是组列,而hue是子组列。
# 调用tips数据集
df_tips = sns.load_dataset('tips')
df_tips.head()


total_bill

tip

sex

smoker

day

time

size

0

16.99

1.01

Female

No

Sun

Dinner

2

1

10.34

1.66

Male

No

Sun

Dinner

3

2

21.01

3.50

Male

No

Sun

Dinner

3

3

23.68

3.31

Male

No

Sun

Dinner

2

4

24.59

3.61

Female

No

Sun

Dinner

4

# Grouped boxplot 分组箱图
# x日期,y餐费,hue自组列,palette调色盘
sns.boxplot(x="day", y="total_bill", hue="smoker", data=df_tips, palette="Set1");

5. 箱图的顺序设置 Control order of boxplot

#如果您按特定顺序设定组,则箱图通常会提供更多信息。这对seaborn来说是可行的。 
# specific order 通过order自定义组
p1=sns.boxplot(x='species', y='sepal_length', data=df, order=["virginica", "versicolor", "setosa"]);
# 中位数由大到小排列
# Find the order 设定中位数
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the boxplot
sns.boxplot(x='species', y='sepal_length', data=df, order=my_order);

6. 添加散点分布 Add jitter over boxplot

# 可以在箱线图上添加每种类别的散点分布情况
# Usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df)
# Add jitter with the swarmplot function 添加散点分布
ax = sns.swarmplot(x='species', y='sepal_length', data=df, color="grey")

7. 显示各类的样本数 Show number of observation on boxplot

# 显示每个组的观察次数可能很有用

# 基础的箱形图
ax = sns.boxplot(x="species", y="sepal_length", data=df)
 
# Calculate number of obs per group & median to position labels 
# 计算各个种类的中位数
medians = df.groupby(['species'])['sepal_length'].median().values
# 统计各个种类的样本数
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
 
# Add it to the plot 
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
    ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horiznotallow='center', size='x-small', color='w', weight='semibold')

8. 箱形图隐藏的数据处理 Hidden data under boxplot

  • 添加分布散点图 boxplot with jitter
  • 使用小提琴图 use violinplot

箱形图总结了几个组的数值变量的分布。但是箱形图的问题不仅是丢失信息,这可能会结果有偏差。如果我们考虑下面的箱形图,很容易得出结论,'C’组的价值高于其他组。但是,我们无法看到每个组中点的基本分布是什么,也没有观察每个组的观察次数。所以我们需要对隐藏的数据进行处理

# libraries and data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Dataset:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
 
# Usual boxplot
sns.boxplot(x='group', y='value', data=df);
# 添加分布散点图 boxplot with jitter
ax = sns.boxplot(x='group', y='value', data=df)
# 通过stripplot添加分布散点图,jitter设置数据间距
ax = sns.stripplot(x='group', y='value', data=df, color="orange", jitter=0.2, size=2.5)
plt.title("Boxplot with jitter", loc="left")
Text(0.0, 1.0, 'Boxplot with jitter')
# 使用小提琴图 use violinplot
sns.violinplot( x='group', y='value', data=df)
plt.title("Violin plot", loc="left")
Text(0.0, 1.0, 'Violin plot')

相关推荐

想减少Windows 11内存占用?请取消固定Teams

如果你想要提高Windows11系统的运行速度,那么可以禁用某些默认启用的功能和设置。如果你的Windows11是安装在已经停止支持的设备或者内存容量不高的旧设备,那么应该立即限制或禁用固...

Windows查看端口占用、查看PID对应的进程、并终止进程

Windows下:查看端口占用netstat-ano|findstr"端口号"获取到pid查看PID对应的进程tasklist|findstr"进程ID"...

计算机组成原理(36): 分时之一——进程

建立一个虚拟机VM目标:给每个程序一个自己的虚拟机“VirtualMachine”,程序并不知道其他的虚拟机。1.1进程(Process)为了捕获正在运行的程序,我们创建一个称为“进程(Proce...

window系统如何停止端口被占用的进程(高手版)

如上图1,作为开发人员是不是经常遇到这个问题?(Webserverfailedtostart.Port9527wasalreadyinuse.)当然,如果在你知道确实有某个进程正占...

电脑的文件无法删除咋回事?你需要这款神兵利器

很多朋友用电脑的时候,都遇到过文件无法删除的情况。这往往是由于文件被某个软件、进程所调用所引发的——在Windows中,某个文件如果被使用,这个文件可能就没法进行删除、重命名之类的操作了。想要进一步操...

Windows日志分析(windows 日志文件)

1.Windows日志文件简介1.1Windows日志核心分类1.系统日志系统日志包含由Windows系统组件记录的事件,记录系统进程和设备驱动程序的活动。由它审核的系统事件包括启动失败的设备驱动程...

电脑软件崩溃、闪退不用慌!DJS Tech 教你几招轻松解决

当你正全神贯注用电脑处理重要文件、沉浸在精彩的游戏世界,或是观看喜欢的视频时,软件突然崩溃、闪退,那一刻的烦躁简直难以言喻。别着急,DJSTech作为深耕计算机领域多年的专业团队,为你带来一系列超...

微软Win11推进淘汰控制面板,时间服务器配置迁移至设置应用

IT之家5月29日消息,科技媒体Winaero昨日(5月28日)发布博文,报道称微软在Windows11系统中,继续推进“淘汰控制面板”进程,配置时间服务器地址选项迁移到设置应...

微软 PowerToys更新,可帮你找出 Win11上哪些进程正在占用该文件

IT之家11月3日消息,微软针对Windows11和Windows10的PowerToys已经更新到了最新的0.64.0版本,并上线了一个名为“文件锁匠FileLock...

Windows基础操作 认识任务管理器(windows任务管理器的使用)

Windows基础操作:认识任务管理器任务管理器(TaskManager)是Windows系统中一个功能强大的实用工具,它为用户提供了实时监控系统资源、管理正在运行的程序和服务的能力。掌握任务管理器...

windows——netstat过滤(终止进程)

windows——netstat过滤(终止进程)在Windows操作系统中,使用netstat命令可以查看网络连接的状态。要过滤特定协议或端口的连接,可以使用以下命令:查看所有连接:netstat-...

只要这么做 Windows Defender与第三方就能和平共存啦

无论大家是否喜欢WindowsDefender,伴随着Windows10的不断升级,它已经成为系统的底层必备组件之一。虽然我们有各种各样的方法去关闭它,换用顺手的第三方,但只要更新打补丁,噩梦就来...

Win10如何彻底关闭wsappx进程(win10 wsappx怎么关闭)

win10如何彻底关闭wsappx进程?wsappx进程是什么?wsappx进程是Windows10系统的一部分,这个进程是WindowsStore和微软通用应用程序平台(UWP)的依赖进程。...

Windows环境黑客入侵应急与排查(黑客入侵电脑原理)

1文件分析1.1临时目录排查黑客往往可能将病毒放在临时目录(tmp/temp),或者将病毒相关文件释放到临时目录,因此需要检查临时目录是否存在异常文件。假设系统盘在C盘,则通常情况下的临时目录如下...

Windows 11 24H2 KB5044384出现大面积安装失败、任务管理器0进程等问题

Windows11KB5044384更新由于出现大量错误而无法在Windows1124H2上安装、其中包括一个奇怪的错误,即由于0x800f0922、0x800736b3和0x8...

取消回复欢迎 发表评论: